计划范文网 >地图 >商业计划书 >

数学选修12教案

数学选修12教案

时间:2025-05-09 作者:计划范文网

数学选修12教案。

数学选修12教案 篇1

学习目标

明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.

学习过程

一、学前准备

复习:

(课本P28A13)填空:

(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;

(3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

(4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

二、新课导学

探究新知(复习教材P14~P25,找出疑惑之处)

问题1:判断下列问题哪个是排列问题,哪个是组合问题:

(1)从4个风景点中选出2个安排游览,有多少种不同的方法?

(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

应用示例:

例1:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

例2:7位同学站成一排,分别求出符合下列要求的不同排法的种数.

(1) 甲站在中间;

(2)甲、乙必须相邻;

(3)甲在乙的左边(但不一定相邻);

(4)甲、乙必须相邻,且丙不能站在排头和排尾;

(5)甲、乙、丙相邻;

(6)甲、乙不相邻;

(7)甲、乙、丙两两不相邻。

反馈练习

1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?

2、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列

3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.

当堂检测

1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )

A.42 B.30 C.20 D.12

2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?

课后作业

1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?

2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

数学选修12教案 篇2

一、教学内容解析

椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的。作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点。学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识。但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受。所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点。

圆锥曲线是平面解析几何研究的主要对象,圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位。

通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础。学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力。

二、教学目标设置:

1.知识与技能目标

(1)学生能掌握椭圆的定义明确焦点、焦距的概念.

(2)学生能推导并掌握椭圆的标准方程.

(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.

2.过程与方法目标:

(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.

(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.

(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.

3.情感态度与价值观目标:

(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.

(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.

(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.

三、学生学情分析

1.能力分析

①学生已初步掌握用坐标法研究直线和圆的方程,

②对含有两个根式方程的化简能力薄弱.

2.认知分析

①学生已初步熟悉求曲线方程的基本步骤,

②学生已经掌握直线和圆的方程,对曲线的方程的`概念有一定的了解,

③学生已经初步掌握研究直线和圆的基本方法.

3.情感分析

学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.

四、教学策略分析

教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用”的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.

课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:

1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义。

2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性。

这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性。

在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量。

五、教学过程:

(一)复习引入

1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边。

意图:

(1)从学生所关心的实际问题引入,使学生了解数学来源于实际;

(2)使学生更直观、形象地了解后面要学的内容;

2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆,再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现。

意图:

(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性。

(2)多媒体演示向学生说明椭圆的具体画法,更直观形象。

(二)讲解新课

由学生画图及教师演示椭圆的形成过程,引导学生归纳定义。

1.椭圆定义:

平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

练习1:已知两个定点坐标分别是(—4,0)、(4,0),动点P到两定点的距离之和等于8,则P点的轨迹是?

练习2:已知两个定点坐标分别是(—4,0)、(4,0),动点P到两定点的距离之和等于6,则P点的轨迹是?

通过两个练习思考:椭圆定义需要注意什么(于意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点。

(1)当2a>|F1F2|时,是椭圆;

(2)当2a=|F1F2|时,是线段。

2.根据定义推导椭圆标准方程:

要求:

(1)学生在画板上建立适当的坐标系;

(2)根据定义推导椭圆的标准方程。

同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤

意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.

数学选修12教案 篇3

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

数学选修12教案 篇4

本学期,我们高二数学组全体成员将在上学期的基础上继续认真贯彻我校的教育教学工作要点,在学校工作计划的指导下,以更新观念为前提,以育人为归宿,以提高课堂教学效率为重点。转变教学理念,改进教学方法,优化教研模式,积极探索数学教研工作,提高数学教学质量,努力让本组数学教师成为有思想、有追求、有能力、有经验、有智慧、有作为的新型教师,使备课组的工作更上一个台阶。

一、教学工作

(一)学科工作目标:

在高二必修2和理科2-1文科1-1两个模块数学学习的基础上,学生已经掌握了很多基本数学概念,了解了很多数学方法,本学期数学教学的主要任务是培养学生的空间思维和问题的转化能力,具体目标如下:

1、使学生获得初步的逻辑能力和分析能力,理解相关结论的产生过程,体会其中蕴含的数学检验思想和方法,培养学生自主探究学习的习惯和能力

2、努力提高学生的化归能力,推理能力和运算能力

3、提高学生分析和解决数学问题的能力,数形结合的应用能力

4、提高学生学习数学的兴趣,树立信心,培养数学思维与习惯

5、努力提高数学教学质量,提高老师业务水平,努力使各层次班级的数学成绩差距缩小在可控范围之内

6、加强交流合作,校内,校外学习借鉴,相互听课,相互学习,互相取长补短,与时俱进,教学相长。

7、在日常工作当中,实现组内资源共享,保持和优化个人特色,同类班级的相关工作做到基本统一。即统一教案、统一练习题。不同层次学生要求分层教学与分层练习。

(二)教学任务与教材分析

本学期授课时间约为19周,教学任务期中考试前:数学必修2约45课时;

期中考试后:文科选修1—1,理科选修2—1,约48课时。机动两周(中秋节、国庆节、期中期末考试)必修2包括空间几何体;点、直线、平面之间的位置关系;直线与方程;圆的方程四章内容。主要是培养学生的空间思维和数形结合解决问题的能力,问题的转化能力,本册书在整个高中数学学习中占很大的比重,也是一个难点,对于文科学生更是挑战,所以在教学过程中要细讲、慢讲,打牢学生基础。文科选修1-1包括常用逻辑用语;圆锥曲线;导数及其应用三章,理科2-1是常用逻辑用语;圆锥曲线与方程;空间向量与立体几何三章;主要是培养学生分析问题解决问题的能力,将形转化为数的解析几何及应用,引导学生由条件到结论的推导形成过程。

(三)学情分析:

本学期高二年级共计16个班级,文科6个班级1-6,理科10个班级7-16其中四个宏志班为1班,14班,15班,16班,10个全省班文科2班-5班,理科7班-13班,2个借读班6班和7班,层次明显,学生差异性较大。宏志班学生学习的主动性较好,基础相对较好,多数学生已经能适应高中数学的学习,主要是要注重数学思维与数学学习方法的总结。理科全省班同学层次不齐,主要是有短板现象,有的同学数学很好,有的很糟糕。在教学过程中更应该分层更细一点,注意关注学生学习习惯的培养。文科全省班学生数学基础普遍较弱,数学学习有很大障碍,在平时教学中多注意学习兴趣的培养,注重基础知识教学,螺旋式上升。加大督查力度,促进数学学习。对于借读班同学,更多的应该是细讲,慢讲,让他们体会数1学学习的乐趣的同时,加大书本内容基本练习教学,让学生感受成功,从而转变学习数学的习惯。

(四)具体措施及活动安排:

针对高一一年出现的'数学学习及教学现象,本学期打算从以下几个方面改进采取有针对性的措施:

1、深入研究,把握教材;

认真学习课程标准,钻研教材,把握各单元、各节的各个知识点的教学要求和重难点,以及各个知识点之间的联系、在整个高中数学中的地位、高考考试要求的层次,熟悉教材的特点和编者的意图,对存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。

2、规范化教学:

严格规范数学教学常规工作。每位教师要认真制定自己的课堂教学设计,把握课堂40分钟。学生作业要求规范(包括学生书写作业的规范和教师批阅作业的规范),注重分层作业实施,加大数学学习督查力度。强化导师制工作。

3、加强学情分析,提高效率。

各位教师根据不同班级学生特点与学习数学的基础差异,在设计时有针对性教学,提高学生学习的积极性,从而提高课堂效率,提高数学成绩。

4、注意从实例出发,抓住本质,讲清解题的关键和基本方法,注意学生课堂反应,关注每一位学生的数学学习,尤其是数学学习学困生。

二、教研工作

(一)工作目标

1、通过教研活动,不断提高每一位教师的个人专业能力与素养,提高课堂驾驭能力与学科研究能力。

2、加强集体备课,统一教学进度,统一不同层次的教学内容,统一不同层次的作业,激发组内同事的团

结协作热情,提高整个小组的凝聚力和创造力。

(二)工作安排计划

(1)按时完成学校(教务处,教研组)相关工作。

(2)统一备课:每周集体备课一次(周一下午),每次有中心发言人,分析指出上周教学中存在的问题,组织进行教学研讨,改进完善。对本周的教学内容进行分析,把握重点难点和本节的高考知识点。制定本周教学计划。统一课堂实例,统一分层作业。每次备课要有记录。

(3)公开课安排:从第二周开始,每周确定一位老师上教学公开课。个人提前一周备好个人教案,并在集体备课时所有老师参与讨论修改,然后先要给组内同事进行20分钟的说课,集体研讨后再上。并邀请相关领导前来听课指导,公开课结束后集体评课,并将教案保存起来,以备以后研究。

(4)听课安排:听课分两种:校内听课,每位教师听同科老师上课不得少于20次,不同年级老师5次以上,并在教研会议上加以讨论;校外听课,对合肥市举行的教研活动积极参与,每次听课后召开教研会,对其评讲学习。

(5)周练安排:每周指定一位老师制定周末作业,作业要体现分层,主要由8道选择题和四道填空题三道解答题组成。分为基础题和拔高题,周日晚自习前收回。进行集中批阅。存在的问题及时订正。

2(7)培优补差工作安排:开学后根据入学考试成绩和上学期期末成绩,分文理确定30~40名培优学生,成立培优班。专人专室进行拔高训练。成立补差班,主动与学生交流,利用课后时间进行补差。根据班级情况,借鉴上学期培优班的经验,将补缺补差做到实处,这个学期建立补缺班,专门针对班级中底子稍弱且学习刻苦的同学,目前先建立两个班实验(文理各一个)。等到时机成熟,将针对不同问题的学生,进行针对性的补差。

(8)导师制工作:高二才进行文理分科,开学考试后,以最快速度了解班级学生基本情况,根据上学期期末考试和入学考试的成绩,对成绩起伏较大的学生加倍关注,主动找这些学生与其交流,争取一个月内把班级每一个学生都找谈话一次,关心爱护并给予适当指导,要注意每个细节。结合班级导师制工作,做好导师制工作下学生的各项工作的开展,每月至少谈一次话。并且详细记录。

总之,我们愿与学校同行,在探索中前进,在反思中成熟,争取教育教学质量更上一个新的台阶。因为我们坚信我们终可以使学生学会,用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。用自己的爱心去对待每一个学生。

数学选修12教案 篇5

教学目标

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1. 等差数列的概念;

2. 等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的`前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式 (n≥1)

推导出公式:(V)课后作业

一、课本P118习题3.2 1,2

二、1.预习内容:课本P116例2P117例4

2.预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

数学选修12教案 篇6

教学准备

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的.定义及运算律的理解和平面向量数量积的应用

教学过程

1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

并规定0向量与任何向量的数量积为0。

×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

2、两个向量的数量积与实数乘向量的积有什么区别?

(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。

(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。

(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。

数学选修12教案 篇7

一、课题:

人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

二、指导思想与理论依据:

《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

三、教材分析:

本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

四、学情分析:

在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

五、教学目标:

(一)教学知识点:

1.对数的概念。

2.对数式与指数式的互化。

(二)能力目标:

1.理解对数的概念。

2.能够进行对数式与指数式的`互化。

(三)德育渗透目标:

1.认识事物之间的相互联系与相互转化,

2.用联系的观点看问题。

六、教学重点与难点:

重点是对数定义,难点是对数概念的理解。

七、教学方法:

讲练结合法八、教学流程:

问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

八、教学反思:

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

数学选修12教案 篇8

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。jHS555.cOM

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

四、教学目标

1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点:

教学重点

1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值”

3.“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出——

例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

(A)椭圆 (B)双曲线 (C)线段 (D)不存在

(2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

(A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5

入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

(二)理解定义、解决问题

例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。

(2)在(1)的条件下,给定点P(-2,2), 求|PA|

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——

练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

引申:若将点A移到圆C外,点M的轨迹会是什么?

【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

【知识链接】

(一)圆锥曲线的定义

1. 圆锥曲线的第一定义

2. 圆锥曲线的统一定义

(二)圆锥曲线定义的应用举例

1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

2.|PF1||PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

七、教学反思

1.本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的`数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

数学选修12教案 篇9

一、教材分析

(一)教材的地位和作用

本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二)教学重点、难点

1、教学重点:椭圆的定义及其标准方程

2、教学难点:椭圆标准方程的推导

(三)三维目标

1、知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

2、过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。

3、情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

二、教学方法和手段

采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

三、教学程序

1、创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

2、画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

3、教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

4、椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5、推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的'椭圆的标准方程,利用学生手中的图形得到焦点在轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

6、例题讲解:通过例题规范学生的解题过程。

7、巩固练习:以多种题型巩固本节课的教学内容。

8、归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

9、课后作业:面对不同层次的学生,设计了必做题与选做题。

10、板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

四、教学评价

本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

数学选修12教案 篇10

一、概说

1.教材分析:

椭圆及其标准方程是圆锥曲线的基础,它的学习方法对整个这一章具有导向和引领作用,直接影响其他圆锥曲线的学习。是后继学习的基础和范示。同时,也是求曲线方程的深化和巩固。

2.教学分析:

椭圆及其标准方程是培养学生观察、分析、发现、概括、推理和探索能力的极好素材。本节课通过创设情景、动手操作、总结归纳,应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生掌握坐标法的规律,掌握数学学科研究的基本过程与方法。

3.学生分析:

高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

基于上述分析,我采取的是教学方法是“问题诱导--启发讨论--探索结果”以及“直观观察--归纳抽象--总结规律”的一种研究性教学方法,注重“引、思、探、练”的'结合。

引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

我设定的教学重点是:椭圆定义的理解及标准方程的推导。

教学难点是:标准方程的推导。

二、目标说明:

根据数学教学大纲要求确立“三位一体”的教学目标。

1.知识与技能目标:

理解椭圆定义、掌握标准方程及其推导。

2.过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。

3.情感、态度和价值观目标:

(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。

(2)进行数学美育的渗透,用哲学的观点指导学习。

三、过程说明:

依据“一个为本,四个调整”的新的教学理念和上述教学目标设计教学过程。“以学生发展为本,新型的师生关系、新型的教学目标、新型的教学方式、新型的呈现方式”体现如下:

(一)对教材的重组与拓展:根据教学目标,选择教学内容,遵循拓展、开放、综合的原则。教材中对椭圆定义尽管很严密,但不够直观,所以增加了影音文件:海尔波谱彗星的运行轨道图,最后,让学生交流用几何画板画椭圆以及5个探究性问题,作为对教材的拓展。

(二)在教学过程中的体现:

1.新课导入:以影音文件“海尔波谱彗星的运行轨道示意图”导入,呈现方式具有新异性,激发学习兴趣;画板画图,增强动手操作意识,直观形象从而引入椭圆定义,进而研究椭圆标准方程。

2.新课呈现:

学生通过观看文件、动手操作,然后自己总结椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力。然后,进行推导椭圆的标准方程,培养运算能力,进而探讨标准方程的特点。教师作为热烈讨论的平等氛围中的引导者,鼓励学生大胆探究、勇于创新,积极谈论和参与体验,培养严谨的逻辑思维,抽象概括的能力,渗透数学美学教育,掌握数形结合的重要数学思想,最后的几个探究性问题鼓励学生积极探索,敢于探究,转变学习方式。

3.巩固应用

根据定义及其标准方程,设计三组九道练习题,引导学生联系、思考、讨论、反馈、矫正,增强运用能力。

4.继续探究:

(1)观察椭圆形状,不同原因在哪里;

(2)改变绳长或变换焦点位置再画椭圆,发现关系;

(3)用几何画板交流画图,观察形状变化;

(4)如何描述形状变化?

引导学生探究欲望,开展研究性学习。

四、评价说明

本节课的学生评价坚持形成性评价和阶段性评价相结合的原则。

(一)形成性评价:从操作能力、概括能力、学习兴趣、交流合作、情绪情感方面对学习效果进行过程评价。对出现问题的学生,教师指出其可取之处并耐心引导,这样有助于培养他们勇于面对挫折,持之以恒地科学探索精神;当学生做的精彩有创新,教师给予学生充分的鼓励,从而进一步激发学生创造的潜能,提高他们的创新能力。

(二)阶段性评价:从单元测试、期中测试等方面对学生的阶段性学习成果进行测试。评价结果以每次测试成绩和学生平时的综合表现为依据。同时要进行学生的自我评价以及教师对行动的综合性评价。

(三)教师自我反思评价:本课充分体现了“一个为本,四个调整”的新课程理念。

五、说课总结

这节课使用计算机网络技术,展现知识的发生过程,是学生始终处于问题探索研究状态之中,激情引趣。注重数学科学研究方法的掌握,是研究性教学的一次有益尝试。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。

数学选修12教案 篇11

一、单元教学内容

(1)算法的基本概念

(2)算法的基本结构:顺序、条件、循环结构

(3)算法的基本语句:输入、输出、赋值、条件、循环语句

二、单元教学内容分析

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

三、单元教学课时安排:

1、算法的基本概念3课时

2、程序框图与算法的基本结构5课时

3、算法的基本语句2课时

四、单元教学目标分析

1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

五、单元教学重点与难点分析

1、重点

(1)理解算法的含义

(2)掌握算法的基本结构

(3)会用算法语句解决简单的实际问题

2、难点

(1)程序框图

(2)变量与赋值

(3)循环结构

(4)算法设计

六、单元总体教学方法

本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

七、单元展开方式与特点

1、展开方式

自然语言→程序框图→算法语句

2、特点

(1)螺旋上升分层递进

(2)整合渗透前呼后应

(3)三线合一横向贯通

(4)弹性处理多样选择

八、单元教学过程分析

1.、算法基本概念教学过程分析

对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

2、算法的流程图教学过程分析

对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

3.、基本算法语句教学过程分析

经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

4.、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

九、单元评价设想

1、重视对学生数学学习过程的评价

关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

2、正确评价学生的数学基础知识和基本技能

关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

数学选修12教案 篇12

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

四、教学目标

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

五、教学重点和难点

1.教学重点

理解并掌握诱导公式.

2.教学难点

正确运用诱导公式,求三角函数值,化简三角函数式.

六、教法学法以及预期效果分析

高中数学优秀教案高中数学教学设计与教学反思

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

1.教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

2.学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的`学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

3.预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.

七、教学流程设计

(一)创设情景

1.复习锐角300,450,600的三角函数值;

2.复习任意角的三角函数定义;

3.问题:由 ,你能否知道sin2100的值吗?引如新课.

设计意图

高中数学优秀教案 高中数学教学设计与教学反思

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

(二)新知探究

1. 让学生发现300角的终边与2100角的终边之间有什么关系;

2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

3.Sin2100与sin300之间有什么关系.

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.

(三)问题一般化

探究一

1.探究发现任意角 的终边与 的终边关于原点对称;

2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;

3.探究发现任意角 与 的三角函数值的关系.

设计意图

首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

(四)练习

利用诱导公式(二),口答下列三角函数值.

(1). ;(2). ;(3). .

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

(五)问题变形

由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 学生自主探究

数学选修12教案 篇13

一、教学目标

知识与技能:

理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:

1、提高学生的推理能力;

2、培养学生应用意识。

二、教学重点、难点:

教学重点:

任意角概念的理解;区间角的集合的书写。

教学难点:

终边相同角的集合的表示;区间角的集合的书写。

三、教学过程

(一)导入新课

1、回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课

1、角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:

注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?

2、象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?

数学选修12教案 篇14

一、目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明

终端框 算法开始与结束

处理框 算法的各种处理操作

判断框 算法的各种转移

输入输出框 输入输出操作

指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的'步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历题

1.用流程图表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固题

1.顺序结构和选择结构的模式是怎样的?

2.怎样用流程图表示算法。

(五)练习P99 2

(六)作业P99 1

数学选修12教案 篇15

一、教学目标

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

4、初步培养学生反证法的数学思维。

二、教学分析

重点:四种命题;难点:四种命题的关系

1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)

1、以故事形式入题

2、多媒体演示

四、教学过程

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意图:创设情景,激发学生学习兴趣

(二)复习提问:

1.命题“同位角相等,两直线平行”的条件与结论各是什么?

2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.

设计意图: 通过复习旧知识,打下学习否命题、逆否命题的基础.

(三)新课讲解:

1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

(四)组织讨论:

让学生归纳什么是否命题,什么是逆否命题。

例1及例2

(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真

引导学生讨论原命题的真假与其他三种命题的真

假有什么关系?举例加以说明,同学们踊跃发言。

(六)课堂小结:

1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

原命题若p则q;

逆命题若q则p;(交换原命题的条件和结论)

否命题,若¬p则¬q;(同时否定原命题的条件和结论)

逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

2、四种命题的关系

(1).原命题为真,它的逆命题不一定为真.

(2).原命题为真,它的否命题不一定为真.

(3).原命题为真,它的逆否命题一定为真

(七)回扣引入

分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

第一句:“该来的没来”

其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

同学们,生活中处处是数学,期待我们善于发现的眼睛。

数学选修12教案 篇16

一、学情分析

高二5班共有学生73人,8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。

二、教学计划

1.加强自身学习。

①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。

②他山之石,能够攻玉。一个人由于生活的环境,应对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。

③强化课改意识。新课改已经全面铺开,新课改的`精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前务必要做的,只有这样,才能使自己的知识新陈代谢。

④认真参与组内备课。珍惜每周一次的群众备课,充分利用好这次群众备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并用心实施好组内的各项安排,落实好课时要求。

⑤增强听课意识。按照学校的要求,积极参加新课改年级的课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。

2.抓好课堂教学主战场,激发师生学习数学热情。

①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实好处,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。

②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后能够解决的,给以适当点拨,对于学生在老师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受潜力的,一概不讲。

③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,必须层面能够反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。

3.做好课后辅导工作。

①利用晚自习,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。

②利用自习课时间,寻找需要帮忙的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。

4.做好作业、考试反馈工作。

学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。

5.规范作答,养成良好习惯。

此刻学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。

6.培养学生的数学兴趣,普及数学价值规律的应用。

兴趣是最好的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。

以上是这个学期的教学工作计划,在实施过程中,将及时作出调整,以期到达教与学的最佳效果。

本文来源:http://www.jhs555.com/j/25268.html